Outerplanar and planar oriented cliques

نویسندگان

  • Ayan Nandy
  • Sagnik Sen
  • Éric Sopena
چکیده

The clique number of an undirected graphG is the maximum order of a complete subgraph of G and is a well-known lower bound for the chromatic number ofG. Every proper k-coloring of G may be viewed as a homomorphism (an edge-preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this paper, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all k ≥ 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analogues of cliques for oriented coloring

We examine subgraphs of oriented graphs in the context of oriented coloring that are analogous to cliques in traditional vertex coloring. Bounds on the sizes of these subgraphs are given for planar, outerplanar, and series-parallel graphs. In particular, the main result of the paper is that a planar graph cannot contain an induced subgraph D with more than 36 vertices such that each pair of ver...

متن کامل

Oriented coloring of triangle-free planar graphs and 2-outerplanar graphs

A graph is planar if it can be embedded on the plane without edge-crossing. A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face). An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that eve...

متن کامل

L(2, 1)-labelings of some famillies of oriented planar graphs

In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1)-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.

متن کامل

L(2, 1)-labelings of Some Families of Oriented Planar Graphs

In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1)-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.

متن کامل

On the Order Dimension of Outerplanar Maps

Schnyder characterized planar graphs in terms of order dimension. Brightwell and Trotter proved that the dimension of the vertex-edgeface poset PM of a planar map M is at most four. In this paper we investigate cases where dim(PM ) ≤ 3 and also where dim(QM ) ≤ 3; here QM denotes the vertex-face poset of M . We show: • If M contains a K4-subdivision, then dim(PM ) = dim(QM ) = 4. • IfM or the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2016